118 research outputs found

    Locating Camera Position in 3-D Space from Distinct Features of Architecture on 2-D Image

    Get PDF
    This research aimed to develop an algorithm that estimates the camera position in space from which an image was created using computer vision techniques. The implemented algorithm involves 3 major steps: defining a distinct combination of features of the object, recognizing the object with the distinct features, and calculating camera position using the mapping information between the projected 2-D image and the 3-D object. A generalized approach and a specific case study of the Cathedral of Notre Dame in Paris are discussed in detail

    The Potential of Pyrolytic Biomass as a Sustainable Biofiller for Styrene-Butadiene Rubber

    Get PDF
    This chapter explains the significant potential of the pyrolytic biomass char for use as a sustainable carbon black replacement filler for rubber materials. The manufacture of rubber filler is not only energy-consuming, contributing significantly to global CO2 emissions, but uses nonrenewable feedstock in production making it unsustainable. Ongoing work focused upon the development of carbonaceous rubber fillers based on coconut shell, a sustainable and renewable source, is presented in this chapter. A comparison between coconut char and commercial carbon black N772 demonstrates the profound potential of the pyrolytic coconut char to be used as filler. The char filler obtained was mixed with SBR and the resulting rubber product was evaluated for their technological performance, exhibiting high surface area and good tensile strength

    The current opportunities and challenges of Web 3.0

    Full text link
    With recent advancements in AI and 5G technologies,as well as the nascent concepts of blockchain and metaverse,a new revolution of the Internet,known as Web 3.0,is emerging. Given its significant potential impact on the internet landscape and various professional sectors,Web 3.0 has captured considerable attention from both academic and industry circles. This article presents an exploratory analysis of the opportunities and challenges associated with Web 3.0. Firstly, the study evaluates the technical differences between Web 1.0, Web 2.0, and Web 3.0, while also delving into the unique technical architecture of Web 3.0. Secondly, by reviewing current literature, the article highlights the current state of development surrounding Web 3.0 from both economic and technological perspective. Thirdly, the study identifies numerous research and regulatory obstacles that presently confront Web 3.0 initiatives. Finally, the article concludes by providing a forward-looking perspective on the potential future growth and progress of Web 3.0 technology

    Low-Cost Floating-Point Processing in ReRAM for Scientific Computing

    Full text link
    We propose ReFloat, a principled approach for low-cost floating-point processing in ReRAM. The exponent offsets based on a base are stored by a flexible and fine-grained floating-point number representation. The key motivation is that, while the number of exponent bits must be reduced due to the exponential relation to the computation latency and hardware cost, the convergence still requires sufficient accuracy for exponents. Our design reconciles the conflicting goals by storing the exponent offsets from a common base among matrix values in a block, which is the granularity of computation in ReRAM. Due to the value locality, the differences among the exponents in a block are small, thus the offsets require much less number of bits to represent exponents. In essence, ReFloat enables the principled local fine-tuning of floating-point representation. Based on the idea, we define a flexible ReFloat format that specifies matrix block size, and the number of bits for exponent and fraction. To determine the base for each block, we propose an optimization method that minimizes the difference between the exponents of the original matrix block and the converted block. We develop the conversion scheme from default double-precision floating-point format to ReFloat format, the computation procedure, and the low-cost floating-point processing architecture in ReRAM

    Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated Learning via Class-Imbalance Reduction

    Full text link
    Due to limited communication capacities of edge devices, most existing federated learning (FL) methods randomly select only a subset of devices to participate in training for each communication round. Compared with engaging all the available clients, the random-selection mechanism can lead to significant performance degradation on non-IID (independent and identically distributed) data. In this paper, we show our key observation that the essential reason resulting in such performance degradation is the class-imbalance of the grouped data from randomly selected clients. Based on our key observation, we design an efficient heterogeneity-aware client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS), which can effectively reduce class-imbalance of the group dataset from the intentionally selected clients. In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way. Based on this measure, we also design a computation-efficient client sampling strategy, such that the actively selected clients will generate a more class-balanced grouped dataset with theoretical guarantees. Extensive experimental results demonstrate Fed-CBS outperforms the status quo approaches. Furthermore, it achieves comparable or even better performance than the ideal setting where all the available clients participate in the FL training

    A Common Variant in CLDN14 is Associated with Primary Biliary Cirrhosis and Bone Mineral Density.

    Get PDF
    Primary biliary cirrhosis (PBC), a chronic autoimmune liver disease, has been associated with increased incidence of osteoporosis. Intriguingly, two PBC susceptibility loci identified through genome-wide association studies are also involved in bone mineral density (BMD). These observations led us to investigate the genetic variants shared between PBC and BMD. We evaluated 72 genome-wide significant BMD SNPs for association with PBC using two European GWAS data sets (n = 8392), with replication of significant findings in a Chinese cohort (685 cases, 1152 controls). Our analysis identified a novel variant in the intron of the CLDN14 gene (rs170183, Pfdr = 0.015) after multiple testing correction. The three associated variants were followed-up in the Chinese cohort; one SNP rs170183 demonstrated consistent evidence of association in diverse ethnic populations (Pcombined = 2.43 × 10(-5)). Notably, expression quantitative trait loci (eQTL) data revealed that rs170183 was correlated with a decline in CLDN14 expression in both lymphoblastoid cell lines and T cells (Padj = 0.003 and 0.016, respectively). In conclusion, our study identified a novel PBC susceptibility variant that has been shown to be strongly associated with BMD, highlighting the potential of pleiotropy to improve gene discovery
    • …
    corecore